Metamath Proof Explorer


Definition df-ditg

Description: Define the directed integral, which is just a regular integral but with a sign change when the limits are interchanged. The A and B here are the lower and upper limits of the integral, usually written as a subscript and superscript next to the integral sign. We define the region of integration to be an open interval instead of closed so that we can use +oo , -oo for limits and also integrate up to a singularity at an endpoint. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Assertion df-ditg
|- S_ [ A -> B ] C _d x = if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cB
 |-  B
2 cC
 |-  C
3 vx
 |-  x
4 3 0 1 2 cdit
 |-  S_ [ A -> B ] C _d x
5 cle
 |-  <_
6 0 1 5 wbr
 |-  A <_ B
7 cioo
 |-  (,)
8 0 1 7 co
 |-  ( A (,) B )
9 3 8 2 citg
 |-  S. ( A (,) B ) C _d x
10 1 0 7 co
 |-  ( B (,) A )
11 3 10 2 citg
 |-  S. ( B (,) A ) C _d x
12 11 cneg
 |-  -u S. ( B (,) A ) C _d x
13 6 9 12 cif
 |-  if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x )
14 4 13 wceq
 |-  S_ [ A -> B ] C _d x = if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x )