Description: Define the directed integral, which is just a regular integral but with a sign change when the limits are interchanged. The A and B here are the lower and upper limits of the integral, usually written as a subscript and superscript next to the integral sign. We define the region of integration to be an open interval instead of closed so that we can use +oo , -oo for limits and also integrate up to a singularity at an endpoint. (Contributed by Mario Carneiro, 13-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ditg | |- S_ [ A -> B ] C _d x = if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | |- A |
|
1 | cB | |- B |
|
2 | cC | |- C |
|
3 | vx | |- x |
|
4 | 3 0 1 2 | cdit | |- S_ [ A -> B ] C _d x |
5 | cle | |- <_ |
|
6 | 0 1 5 | wbr | |- A <_ B |
7 | cioo | |- (,) |
|
8 | 0 1 7 | co | |- ( A (,) B ) |
9 | 3 8 2 | citg | |- S. ( A (,) B ) C _d x |
10 | 1 0 7 | co | |- ( B (,) A ) |
11 | 3 10 2 | citg | |- S. ( B (,) A ) C _d x |
12 | 11 | cneg | |- -u S. ( B (,) A ) C _d x |
13 | 6 9 12 | cif | |- if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x ) |
14 | 4 13 | wceq | |- S_ [ A -> B ] C _d x = if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x ) |