Step |
Hyp |
Ref |
Expression |
0 |
|
cdpj |
|- dProj |
1 |
|
vg |
|- g |
2 |
|
cgrp |
|- Grp |
3 |
|
vs |
|- s |
4 |
|
cdprd |
|- DProd |
5 |
4
|
cdm |
|- dom DProd |
6 |
1
|
cv |
|- g |
7 |
6
|
csn |
|- { g } |
8 |
5 7
|
cima |
|- ( dom DProd " { g } ) |
9 |
|
vi |
|- i |
10 |
3
|
cv |
|- s |
11 |
10
|
cdm |
|- dom s |
12 |
9
|
cv |
|- i |
13 |
12 10
|
cfv |
|- ( s ` i ) |
14 |
|
cpj1 |
|- proj1 |
15 |
6 14
|
cfv |
|- ( proj1 ` g ) |
16 |
12
|
csn |
|- { i } |
17 |
11 16
|
cdif |
|- ( dom s \ { i } ) |
18 |
10 17
|
cres |
|- ( s |` ( dom s \ { i } ) ) |
19 |
6 18 4
|
co |
|- ( g DProd ( s |` ( dom s \ { i } ) ) ) |
20 |
13 19 15
|
co |
|- ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) |
21 |
9 11 20
|
cmpt |
|- ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) |
22 |
1 3 2 8 21
|
cmpo |
|- ( g e. Grp , s e. ( dom DProd " { g } ) |-> ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) ) |
23 |
0 22
|
wceq |
|- dProj = ( g e. Grp , s e. ( dom DProd " { g } ) |-> ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) ) |