| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cerl |
|- ~RL |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vs |
|- s |
| 4 |
|
cmulr |
|- .r |
| 5 |
1
|
cv |
|- r |
| 6 |
5 4
|
cfv |
|- ( .r ` r ) |
| 7 |
|
vx |
|- x |
| 8 |
|
cbs |
|- Base |
| 9 |
5 8
|
cfv |
|- ( Base ` r ) |
| 10 |
3
|
cv |
|- s |
| 11 |
9 10
|
cxp |
|- ( ( Base ` r ) X. s ) |
| 12 |
|
vw |
|- w |
| 13 |
|
va |
|- a |
| 14 |
|
vb |
|- b |
| 15 |
13
|
cv |
|- a |
| 16 |
12
|
cv |
|- w |
| 17 |
15 16
|
wcel |
|- a e. w |
| 18 |
14
|
cv |
|- b |
| 19 |
18 16
|
wcel |
|- b e. w |
| 20 |
17 19
|
wa |
|- ( a e. w /\ b e. w ) |
| 21 |
|
vt |
|- t |
| 22 |
21
|
cv |
|- t |
| 23 |
7
|
cv |
|- x |
| 24 |
|
c1st |
|- 1st |
| 25 |
15 24
|
cfv |
|- ( 1st ` a ) |
| 26 |
|
c2nd |
|- 2nd |
| 27 |
18 26
|
cfv |
|- ( 2nd ` b ) |
| 28 |
25 27 23
|
co |
|- ( ( 1st ` a ) x ( 2nd ` b ) ) |
| 29 |
|
csg |
|- -g |
| 30 |
5 29
|
cfv |
|- ( -g ` r ) |
| 31 |
18 24
|
cfv |
|- ( 1st ` b ) |
| 32 |
15 26
|
cfv |
|- ( 2nd ` a ) |
| 33 |
31 32 23
|
co |
|- ( ( 1st ` b ) x ( 2nd ` a ) ) |
| 34 |
28 33 30
|
co |
|- ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) |
| 35 |
22 34 23
|
co |
|- ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) |
| 36 |
|
c0g |
|- 0g |
| 37 |
5 36
|
cfv |
|- ( 0g ` r ) |
| 38 |
35 37
|
wceq |
|- ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) |
| 39 |
38 21 10
|
wrex |
|- E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) |
| 40 |
20 39
|
wa |
|- ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) |
| 41 |
40 13 14
|
copab |
|- { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } |
| 42 |
12 11 41
|
csb |
|- [_ ( ( Base ` r ) X. s ) / w ]_ { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } |
| 43 |
7 6 42
|
csb |
|- [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } |
| 44 |
1 3 2 2 43
|
cmpo |
|- ( r e. _V , s e. _V |-> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } ) |
| 45 |
0 44
|
wceq |
|- ~RL = ( r e. _V , s e. _V |-> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } ) |