Step |
Hyp |
Ref |
Expression |
0 |
|
cestrc |
|- ExtStrCat |
1 |
|
vu |
|- u |
2 |
|
cvv |
|- _V |
3 |
|
cbs |
|- Base |
4 |
|
cnx |
|- ndx |
5 |
4 3
|
cfv |
|- ( Base ` ndx ) |
6 |
1
|
cv |
|- u |
7 |
5 6
|
cop |
|- <. ( Base ` ndx ) , u >. |
8 |
|
chom |
|- Hom |
9 |
4 8
|
cfv |
|- ( Hom ` ndx ) |
10 |
|
vx |
|- x |
11 |
|
vy |
|- y |
12 |
11
|
cv |
|- y |
13 |
12 3
|
cfv |
|- ( Base ` y ) |
14 |
|
cmap |
|- ^m |
15 |
10
|
cv |
|- x |
16 |
15 3
|
cfv |
|- ( Base ` x ) |
17 |
13 16 14
|
co |
|- ( ( Base ` y ) ^m ( Base ` x ) ) |
18 |
10 11 6 6 17
|
cmpo |
|- ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) |
19 |
9 18
|
cop |
|- <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. |
20 |
|
cco |
|- comp |
21 |
4 20
|
cfv |
|- ( comp ` ndx ) |
22 |
|
vv |
|- v |
23 |
6 6
|
cxp |
|- ( u X. u ) |
24 |
|
vz |
|- z |
25 |
|
vg |
|- g |
26 |
24
|
cv |
|- z |
27 |
26 3
|
cfv |
|- ( Base ` z ) |
28 |
|
c2nd |
|- 2nd |
29 |
22
|
cv |
|- v |
30 |
29 28
|
cfv |
|- ( 2nd ` v ) |
31 |
30 3
|
cfv |
|- ( Base ` ( 2nd ` v ) ) |
32 |
27 31 14
|
co |
|- ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) |
33 |
|
vf |
|- f |
34 |
|
c1st |
|- 1st |
35 |
29 34
|
cfv |
|- ( 1st ` v ) |
36 |
35 3
|
cfv |
|- ( Base ` ( 1st ` v ) ) |
37 |
31 36 14
|
co |
|- ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |
38 |
25
|
cv |
|- g |
39 |
33
|
cv |
|- f |
40 |
38 39
|
ccom |
|- ( g o. f ) |
41 |
25 33 32 37 40
|
cmpo |
|- ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) |
42 |
22 24 23 6 41
|
cmpo |
|- ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) |
43 |
21 42
|
cop |
|- <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. |
44 |
7 19 43
|
ctp |
|- { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } |
45 |
1 2 44
|
cmpt |
|- ( u e. _V |-> { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } ) |
46 |
0 45
|
wceq |
|- ExtStrCat = ( u e. _V |-> { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } ) |