Metamath Proof Explorer


Definition df-irreflexive

Description: Define irreflexive relation; relation R is irreflexive over the set A iff A. x e. A -. x R x . Note that a relation can be neither reflexive nor irreflexive. (Contributed by David A. Wheeler, 1-Dec-2019)

Ref Expression
Assertion df-irreflexive
|- ( R Irreflexive A <-> ( R C_ ( A X. A ) /\ A. x e. A -. x R x ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 cA
 |-  A
2 1 0 wirreflexive
 |-  R Irreflexive A
3 1 1 cxp
 |-  ( A X. A )
4 0 3 wss
 |-  R C_ ( A X. A )
5 vx
 |-  x
6 5 cv
 |-  x
7 6 6 0 wbr
 |-  x R x
8 7 wn
 |-  -. x R x
9 8 5 1 wral
 |-  A. x e. A -. x R x
10 4 9 wa
 |-  ( R C_ ( A X. A ) /\ A. x e. A -. x R x )
11 2 10 wb
 |-  ( R Irreflexive A <-> ( R C_ ( A X. A ) /\ A. x e. A -. x R x ) )