| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cldgis |
|- ldgIdlSeq |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vi |
|- i |
| 4 |
|
clidl |
|- LIdeal |
| 5 |
|
cpl1 |
|- Poly1 |
| 6 |
1
|
cv |
|- r |
| 7 |
6 5
|
cfv |
|- ( Poly1 ` r ) |
| 8 |
7 4
|
cfv |
|- ( LIdeal ` ( Poly1 ` r ) ) |
| 9 |
|
vx |
|- x |
| 10 |
|
cn0 |
|- NN0 |
| 11 |
|
vj |
|- j |
| 12 |
|
vk |
|- k |
| 13 |
3
|
cv |
|- i |
| 14 |
|
cdg1 |
|- deg1 |
| 15 |
6 14
|
cfv |
|- ( deg1 ` r ) |
| 16 |
12
|
cv |
|- k |
| 17 |
16 15
|
cfv |
|- ( ( deg1 ` r ) ` k ) |
| 18 |
|
cle |
|- <_ |
| 19 |
9
|
cv |
|- x |
| 20 |
17 19 18
|
wbr |
|- ( ( deg1 ` r ) ` k ) <_ x |
| 21 |
11
|
cv |
|- j |
| 22 |
|
cco1 |
|- coe1 |
| 23 |
16 22
|
cfv |
|- ( coe1 ` k ) |
| 24 |
19 23
|
cfv |
|- ( ( coe1 ` k ) ` x ) |
| 25 |
21 24
|
wceq |
|- j = ( ( coe1 ` k ) ` x ) |
| 26 |
20 25
|
wa |
|- ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) |
| 27 |
26 12 13
|
wrex |
|- E. k e. i ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) |
| 28 |
27 11
|
cab |
|- { j | E. k e. i ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) } |
| 29 |
9 10 28
|
cmpt |
|- ( x e. NN0 |-> { j | E. k e. i ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) } ) |
| 30 |
3 8 29
|
cmpt |
|- ( i e. ( LIdeal ` ( Poly1 ` r ) ) |-> ( x e. NN0 |-> { j | E. k e. i ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) } ) ) |
| 31 |
1 2 30
|
cmpt |
|- ( r e. _V |-> ( i e. ( LIdeal ` ( Poly1 ` r ) ) |-> ( x e. NN0 |-> { j | E. k e. i ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) } ) ) ) |
| 32 |
0 31
|
wceq |
|- ldgIdlSeq = ( r e. _V |-> ( i e. ( LIdeal ` ( Poly1 ` r ) ) |-> ( x e. NN0 |-> { j | E. k e. i ( ( ( deg1 ` r ) ` k ) <_ x /\ j = ( ( coe1 ` k ) ` x ) ) } ) ) ) |