| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cleg |  |-  leG | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | ve |  |-  e | 
						
							| 4 |  | vf |  |-  f | 
						
							| 5 |  | cbs |  |-  Base | 
						
							| 6 | 1 | cv |  |-  g | 
						
							| 7 | 6 5 | cfv |  |-  ( Base ` g ) | 
						
							| 8 |  | vp |  |-  p | 
						
							| 9 |  | cds |  |-  dist | 
						
							| 10 | 6 9 | cfv |  |-  ( dist ` g ) | 
						
							| 11 |  | vd |  |-  d | 
						
							| 12 |  | citv |  |-  Itv | 
						
							| 13 | 6 12 | cfv |  |-  ( Itv ` g ) | 
						
							| 14 |  | vi |  |-  i | 
						
							| 15 |  | vx |  |-  x | 
						
							| 16 | 8 | cv |  |-  p | 
						
							| 17 |  | vy |  |-  y | 
						
							| 18 | 4 | cv |  |-  f | 
						
							| 19 | 15 | cv |  |-  x | 
						
							| 20 | 11 | cv |  |-  d | 
						
							| 21 | 17 | cv |  |-  y | 
						
							| 22 | 19 21 20 | co |  |-  ( x d y ) | 
						
							| 23 | 18 22 | wceq |  |-  f = ( x d y ) | 
						
							| 24 |  | vz |  |-  z | 
						
							| 25 | 24 | cv |  |-  z | 
						
							| 26 | 14 | cv |  |-  i | 
						
							| 27 | 19 21 26 | co |  |-  ( x i y ) | 
						
							| 28 | 25 27 | wcel |  |-  z e. ( x i y ) | 
						
							| 29 | 3 | cv |  |-  e | 
						
							| 30 | 19 25 20 | co |  |-  ( x d z ) | 
						
							| 31 | 29 30 | wceq |  |-  e = ( x d z ) | 
						
							| 32 | 28 31 | wa |  |-  ( z e. ( x i y ) /\ e = ( x d z ) ) | 
						
							| 33 | 32 24 16 | wrex |  |-  E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) | 
						
							| 34 | 23 33 | wa |  |-  ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) | 
						
							| 35 | 34 17 16 | wrex |  |-  E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) | 
						
							| 36 | 35 15 16 | wrex |  |-  E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) | 
						
							| 37 | 36 14 13 | wsbc |  |-  [. ( Itv ` g ) / i ]. E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) | 
						
							| 38 | 37 11 10 | wsbc |  |-  [. ( dist ` g ) / d ]. [. ( Itv ` g ) / i ]. E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) | 
						
							| 39 | 38 8 7 | wsbc |  |-  [. ( Base ` g ) / p ]. [. ( dist ` g ) / d ]. [. ( Itv ` g ) / i ]. E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) | 
						
							| 40 | 39 3 4 | copab |  |-  { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / d ]. [. ( Itv ` g ) / i ]. E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) } | 
						
							| 41 | 1 2 40 | cmpt |  |-  ( g e. _V |-> { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / d ]. [. ( Itv ` g ) / i ]. E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) } ) | 
						
							| 42 | 0 41 | wceq |  |-  leG = ( g e. _V |-> { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / d ]. [. ( Itv ` g ) / i ]. E. x e. p E. y e. p ( f = ( x d y ) /\ E. z e. p ( z e. ( x i y ) /\ e = ( x d z ) ) ) } ) |