| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cltpq |
|- |
| 1 |
|
vx |
|- x |
| 2 |
|
vy |
|- y |
| 3 |
1
|
cv |
|- x |
| 4 |
|
cnpi |
|- N. |
| 5 |
4 4
|
cxp |
|- ( N. X. N. ) |
| 6 |
3 5
|
wcel |
|- x e. ( N. X. N. ) |
| 7 |
2
|
cv |
|- y |
| 8 |
7 5
|
wcel |
|- y e. ( N. X. N. ) |
| 9 |
6 8
|
wa |
|- ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) |
| 10 |
|
c1st |
|- 1st |
| 11 |
3 10
|
cfv |
|- ( 1st ` x ) |
| 12 |
|
cmi |
|- .N |
| 13 |
|
c2nd |
|- 2nd |
| 14 |
7 13
|
cfv |
|- ( 2nd ` y ) |
| 15 |
11 14 12
|
co |
|- ( ( 1st ` x ) .N ( 2nd ` y ) ) |
| 16 |
|
clti |
|- |
| 17 |
7 10
|
cfv |
|- ( 1st ` y ) |
| 18 |
3 13
|
cfv |
|- ( 2nd ` x ) |
| 19 |
17 18 12
|
co |
|- ( ( 1st ` y ) .N ( 2nd ` x ) ) |
| 20 |
15 19 16
|
wbr |
|- ( ( 1st ` x ) .N ( 2nd ` y ) ) |
| 21 |
9 20
|
wa |
|- ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) ) |
| 22 |
21 1 2
|
copab |
|- { <. x , y >. | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) ) |
| 23 |
0 22
|
wceq |
|- . | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ ( ( 1st ` x ) .N ( 2nd ` y ) ) |