Step |
Hyp |
Ref |
Expression |
0 |
|
cmmul |
|- maMul |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
vo |
|- o |
4 |
|
c1st |
|- 1st |
5 |
3
|
cv |
|- o |
6 |
5 4
|
cfv |
|- ( 1st ` o ) |
7 |
6 4
|
cfv |
|- ( 1st ` ( 1st ` o ) ) |
8 |
|
vm |
|- m |
9 |
|
c2nd |
|- 2nd |
10 |
6 9
|
cfv |
|- ( 2nd ` ( 1st ` o ) ) |
11 |
|
vn |
|- n |
12 |
5 9
|
cfv |
|- ( 2nd ` o ) |
13 |
|
vp |
|- p |
14 |
|
vx |
|- x |
15 |
|
cbs |
|- Base |
16 |
1
|
cv |
|- r |
17 |
16 15
|
cfv |
|- ( Base ` r ) |
18 |
|
cmap |
|- ^m |
19 |
8
|
cv |
|- m |
20 |
11
|
cv |
|- n |
21 |
19 20
|
cxp |
|- ( m X. n ) |
22 |
17 21 18
|
co |
|- ( ( Base ` r ) ^m ( m X. n ) ) |
23 |
|
vy |
|- y |
24 |
13
|
cv |
|- p |
25 |
20 24
|
cxp |
|- ( n X. p ) |
26 |
17 25 18
|
co |
|- ( ( Base ` r ) ^m ( n X. p ) ) |
27 |
|
vi |
|- i |
28 |
|
vk |
|- k |
29 |
|
cgsu |
|- gsum |
30 |
|
vj |
|- j |
31 |
27
|
cv |
|- i |
32 |
14
|
cv |
|- x |
33 |
30
|
cv |
|- j |
34 |
31 33 32
|
co |
|- ( i x j ) |
35 |
|
cmulr |
|- .r |
36 |
16 35
|
cfv |
|- ( .r ` r ) |
37 |
23
|
cv |
|- y |
38 |
28
|
cv |
|- k |
39 |
33 38 37
|
co |
|- ( j y k ) |
40 |
34 39 36
|
co |
|- ( ( i x j ) ( .r ` r ) ( j y k ) ) |
41 |
30 20 40
|
cmpt |
|- ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) |
42 |
16 41 29
|
co |
|- ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) |
43 |
27 28 19 24 42
|
cmpo |
|- ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) |
44 |
14 23 22 26 43
|
cmpo |
|- ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
45 |
13 12 44
|
csb |
|- [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
46 |
11 10 45
|
csb |
|- [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
47 |
8 7 46
|
csb |
|- [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
48 |
1 3 2 2 47
|
cmpo |
|- ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |
49 |
0 48
|
wceq |
|- maMul = ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |