Description: Define the ordinal addition operation. (Contributed by NM, 3-May-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | df-oadd | |- +o = ( x e. On , y e. On |-> ( rec ( ( z e. _V |-> suc z ) , x ) ` y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | coa | |- +o |
|
1 | vx | |- x |
|
2 | con0 | |- On |
|
3 | vy | |- y |
|
4 | vz | |- z |
|
5 | cvv | |- _V |
|
6 | 4 | cv | |- z |
7 | 6 | csuc | |- suc z |
8 | 4 5 7 | cmpt | |- ( z e. _V |-> suc z ) |
9 | 1 | cv | |- x |
10 | 8 9 | crdg | |- rec ( ( z e. _V |-> suc z ) , x ) |
11 | 3 | cv | |- y |
12 | 11 10 | cfv | |- ( rec ( ( z e. _V |-> suc z ) , x ) ` y ) |
13 | 1 3 2 2 12 | cmpo | |- ( x e. On , y e. On |-> ( rec ( ( z e. _V |-> suc z ) , x ) ` y ) ) |
14 | 0 13 | wceq | |- +o = ( x e. On , y e. On |-> ( rec ( ( z e. _V |-> suc z ) , x ) ` y ) ) |