Metamath Proof Explorer


Definition df-oadd

Description: Define the ordinal addition operation. (Contributed by NM, 3-May-1995)

Ref Expression
Assertion df-oadd
|- +o = ( x e. On , y e. On |-> ( rec ( ( z e. _V |-> suc z ) , x ) ` y ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 coa
 |-  +o
1 vx
 |-  x
2 con0
 |-  On
3 vy
 |-  y
4 vz
 |-  z
5 cvv
 |-  _V
6 4 cv
 |-  z
7 6 csuc
 |-  suc z
8 4 5 7 cmpt
 |-  ( z e. _V |-> suc z )
9 1 cv
 |-  x
10 8 9 crdg
 |-  rec ( ( z e. _V |-> suc z ) , x )
11 3 cv
 |-  y
12 11 10 cfv
 |-  ( rec ( ( z e. _V |-> suc z ) , x ) ` y )
13 1 3 2 2 12 cmpo
 |-  ( x e. On , y e. On |-> ( rec ( ( z e. _V |-> suc z ) , x ) ` y ) )
14 0 13 wceq
 |-  +o = ( x e. On , y e. On |-> ( rec ( ( z e. _V |-> suc z ) , x ) ` y ) )