Metamath Proof Explorer


Definition df-ptdf

Description: Define the predicate PtDf , which is a utility definition used to shorten definitions and simplify proofs. (Contributed by Andrew Salmon, 15-Jul-2012)

Ref Expression
Assertion df-ptdf
|- PtDf ( A , B ) = ( x e. RR |-> ( ( ( x .v ( B -r A ) ) +v A ) " { 1 , 2 , 3 } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cB
 |-  B
2 0 1 cptdfc
 |-  PtDf ( A , B )
3 vx
 |-  x
4 cr
 |-  RR
5 3 cv
 |-  x
6 ctimesr
 |-  .v
7 cminusr
 |-  -r
8 1 0 7 co
 |-  ( B -r A )
9 5 8 6 co
 |-  ( x .v ( B -r A ) )
10 cpv
 |-  +v
11 9 0 10 co
 |-  ( ( x .v ( B -r A ) ) +v A )
12 c1
 |-  1
13 c2
 |-  2
14 c3
 |-  3
15 12 13 14 ctp
 |-  { 1 , 2 , 3 }
16 11 15 cima
 |-  ( ( ( x .v ( B -r A ) ) +v A ) " { 1 , 2 , 3 } )
17 3 4 16 cmpt
 |-  ( x e. RR |-> ( ( ( x .v ( B -r A ) ) +v A ) " { 1 , 2 , 3 } ) )
18 2 17 wceq
 |-  PtDf ( A , B ) = ( x e. RR |-> ( ( ( x .v ( B -r A ) ) +v A ) " { 1 , 2 , 3 } ) )