Description: Define the predicate PtDf , which is a utility definition used to shorten definitions and simplify proofs. (Contributed by Andrew Salmon, 15-Jul-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ptdf | |- PtDf ( A , B ) = ( x e. RR |-> ( ( ( x .v ( B -r A ) ) +v A ) " { 1 , 2 , 3 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | |- A |
|
1 | cB | |- B |
|
2 | 0 1 | cptdfc | |- PtDf ( A , B ) |
3 | vx | |- x |
|
4 | cr | |- RR |
|
5 | 3 | cv | |- x |
6 | ctimesr | |- .v |
|
7 | cminusr | |- -r |
|
8 | 1 0 7 | co | |- ( B -r A ) |
9 | 5 8 6 | co | |- ( x .v ( B -r A ) ) |
10 | cpv | |- +v |
|
11 | 9 0 10 | co | |- ( ( x .v ( B -r A ) ) +v A ) |
12 | c1 | |- 1 |
|
13 | c2 | |- 2 |
|
14 | c3 | |- 3 |
|
15 | 12 13 14 | ctp | |- { 1 , 2 , 3 } |
16 | 11 15 | cima | |- ( ( ( x .v ( B -r A ) ) +v A ) " { 1 , 2 , 3 } ) |
17 | 3 4 16 | cmpt | |- ( x e. RR |-> ( ( ( x .v ( B -r A ) ) +v A ) " { 1 , 2 , 3 } ) ) |
18 | 2 17 | wceq | |- PtDf ( A , B ) = ( x e. RR |-> ( ( ( x .v ( B -r A ) ) +v A ) " { 1 , 2 , 3 } ) ) |