| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpthson |
|- PathsOn |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
va |
|- a |
| 4 |
|
cvtx |
|- Vtx |
| 5 |
1
|
cv |
|- g |
| 6 |
5 4
|
cfv |
|- ( Vtx ` g ) |
| 7 |
|
vb |
|- b |
| 8 |
|
vf |
|- f |
| 9 |
|
vp |
|- p |
| 10 |
8
|
cv |
|- f |
| 11 |
3
|
cv |
|- a |
| 12 |
|
ctrlson |
|- TrailsOn |
| 13 |
5 12
|
cfv |
|- ( TrailsOn ` g ) |
| 14 |
7
|
cv |
|- b |
| 15 |
11 14 13
|
co |
|- ( a ( TrailsOn ` g ) b ) |
| 16 |
9
|
cv |
|- p |
| 17 |
10 16 15
|
wbr |
|- f ( a ( TrailsOn ` g ) b ) p |
| 18 |
|
cpths |
|- Paths |
| 19 |
5 18
|
cfv |
|- ( Paths ` g ) |
| 20 |
10 16 19
|
wbr |
|- f ( Paths ` g ) p |
| 21 |
17 20
|
wa |
|- ( f ( a ( TrailsOn ` g ) b ) p /\ f ( Paths ` g ) p ) |
| 22 |
21 8 9
|
copab |
|- { <. f , p >. | ( f ( a ( TrailsOn ` g ) b ) p /\ f ( Paths ` g ) p ) } |
| 23 |
3 7 6 6 22
|
cmpo |
|- ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( a ( TrailsOn ` g ) b ) p /\ f ( Paths ` g ) p ) } ) |
| 24 |
1 2 23
|
cmpt |
|- ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( a ( TrailsOn ` g ) b ) p /\ f ( Paths ` g ) p ) } ) ) |
| 25 |
0 24
|
wceq |
|- PathsOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( a ( TrailsOn ` g ) b ) p /\ f ( Paths ` g ) p ) } ) ) |