Metamath Proof Explorer
Definition df-r
Description: Define the set of real numbers. (Contributed by NM, 22-Feb-1996)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
df-r |
|- RR = ( R. X. { 0R } ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cr |
|- RR |
1 |
|
cnr |
|- R. |
2 |
|
c0r |
|- 0R |
3 |
2
|
csn |
|- { 0R } |
4 |
1 3
|
cxp |
|- ( R. X. { 0R } ) |
5 |
0 4
|
wceq |
|- RR = ( R. X. { 0R } ) |