Metamath Proof Explorer


Definition df-r

Description: Define the set of real numbers. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion df-r
|- RR = ( R. X. { 0R } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cr
 |-  RR
1 cnr
 |-  R.
2 c0r
 |-  0R
3 2 csn
 |-  { 0R }
4 1 3 cxp
 |-  ( R. X. { 0R } )
5 0 4 wceq
 |-  RR = ( R. X. { 0R } )