Description: Define the "k-regular simple graph" predicate, which is true for a simple graph being k-regular: read G RegUSGraph K as G is a K-regular simple graph. (Contributed by Alexander van der Vekens, 6-Jul-2018) (Revised by AV, 18-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-rusgr | |- RegUSGraph = { <. g , k >. | ( g e. USGraph /\ g RegGraph k ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | crusgr | |- RegUSGraph |
|
1 | vg | |- g |
|
2 | vk | |- k |
|
3 | 1 | cv | |- g |
4 | cusgr | |- USGraph |
|
5 | 3 4 | wcel | |- g e. USGraph |
6 | crgr | |- RegGraph |
|
7 | 2 | cv | |- k |
8 | 3 7 6 | wbr | |- g RegGraph k |
9 | 5 8 | wa | |- ( g e. USGraph /\ g RegGraph k ) |
10 | 9 1 2 | copab | |- { <. g , k >. | ( g e. USGraph /\ g RegGraph k ) } |
11 | 0 10 | wceq | |- RegUSGraph = { <. g , k >. | ( g e. USGraph /\ g RegGraph k ) } |