Description: Define group subtraction (also called division for multiplicative groups). (Contributed by NM, 31-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sbg | |- -g = ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | csg | |- -g | |
| 1 | vg | |- g | |
| 2 | cvv | |- _V | |
| 3 | vx | |- x | |
| 4 | cbs | |- Base | |
| 5 | 1 | cv | |- g | 
| 6 | 5 4 | cfv | |- ( Base ` g ) | 
| 7 | vy | |- y | |
| 8 | 3 | cv | |- x | 
| 9 | cplusg | |- +g | |
| 10 | 5 9 | cfv | |- ( +g ` g ) | 
| 11 | cminusg | |- invg | |
| 12 | 5 11 | cfv | |- ( invg ` g ) | 
| 13 | 7 | cv | |- y | 
| 14 | 13 12 | cfv | |- ( ( invg ` g ) ` y ) | 
| 15 | 8 14 10 | co | |- ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) | 
| 16 | 3 7 6 6 15 | cmpo | |- ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) | 
| 17 | 1 2 16 | cmpt | |- ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) ) | 
| 18 | 0 17 | wceq | |- -g = ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) ) |