Metamath Proof Explorer


Definition df-sbg

Description: Define group subtraction (also called division for multiplicative groups). (Contributed by NM, 31-Mar-2014)

Ref Expression
Assertion df-sbg
|- -g = ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csg
 |-  -g
1 vg
 |-  g
2 cvv
 |-  _V
3 vx
 |-  x
4 cbs
 |-  Base
5 1 cv
 |-  g
6 5 4 cfv
 |-  ( Base ` g )
7 vy
 |-  y
8 3 cv
 |-  x
9 cplusg
 |-  +g
10 5 9 cfv
 |-  ( +g ` g )
11 cminusg
 |-  invg
12 5 11 cfv
 |-  ( invg ` g )
13 7 cv
 |-  y
14 13 12 cfv
 |-  ( ( invg ` g ) ` y )
15 8 14 10 co
 |-  ( x ( +g ` g ) ( ( invg ` g ) ` y ) )
16 3 7 6 6 15 cmpo
 |-  ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) )
17 1 2 16 cmpt
 |-  ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) )
18 0 17 wceq
 |-  -g = ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) )