Metamath Proof Explorer


Definition df-so

Description: Define the strict complete (linear) order predicate. The expression R Or A is true if relationship R orders A . For example, < Or RR is true ( ltso ). Equivalent to Definition 6.19(1) of TakeutiZaring p. 29. (Contributed by NM, 21-Jan-1996)

Ref Expression
Assertion df-so
|- ( R Or A <-> ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 cA
 |-  A
2 1 0 wor
 |-  R Or A
3 1 0 wpo
 |-  R Po A
4 vx
 |-  x
5 vy
 |-  y
6 4 cv
 |-  x
7 5 cv
 |-  y
8 6 7 0 wbr
 |-  x R y
9 6 7 wceq
 |-  x = y
10 7 6 0 wbr
 |-  y R x
11 8 9 10 w3o
 |-  ( x R y \/ x = y \/ y R x )
12 11 5 1 wral
 |-  A. y e. A ( x R y \/ x = y \/ y R x )
13 12 4 1 wral
 |-  A. x e. A A. y e. A ( x R y \/ x = y \/ y R x )
14 3 13 wa
 |-  ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) )
15 2 14 wb
 |-  ( R Or A <-> ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) )