Metamath Proof Explorer


Definition df-sslt

Description: Define the relationship that holds iff one set of surreals completely precedes another. (Contributed by Scott Fenton, 7-Dec-2021)

Ref Expression
Assertion df-sslt
|- <. | ( a C_ No /\ b C_ No /\ A. x e. a A. y e. b x 

Detailed syntax breakdown

Step Hyp Ref Expression
0 csslt
 |-  <
1 va
 |-  a
2 vb
 |-  b
3 1 cv
 |-  a
4 csur
 |-  No
5 3 4 wss
 |-  a C_ No
6 2 cv
 |-  b
7 6 4 wss
 |-  b C_ No
8 vx
 |-  x
9 vy
 |-  y
10 8 cv
 |-  x
11 cslt
 |-  
12 9 cv
 |-  y
13 10 12 11 wbr
 |-  x 
14 13 9 6 wral
 |-  A. y e. b x 
15 14 8 3 wral
 |-  A. x e. a A. y e. b x 
16 5 7 15 w3a
 |-  ( a C_ No /\ b C_ No /\ A. x e. a A. y e. b x 
17 16 1 2 copab
 |-  { <. a , b >. | ( a C_ No /\ b C_ No /\ A. x e. a A. y e. b x 
18 0 17 wceq
 |-  <. | ( a C_ No /\ b C_ No /\ A. x e. a A. y e. b x