Description: Define the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-subr | |- -r = ( x e. _V , y e. _V |-> ( v e. RR |-> ( ( x ` v ) - ( y ` v ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cminusr | |- -r |
|
| 1 | vx | |- x |
|
| 2 | cvv | |- _V |
|
| 3 | vy | |- y |
|
| 4 | vv | |- v |
|
| 5 | cr | |- RR |
|
| 6 | 1 | cv | |- x |
| 7 | 4 | cv | |- v |
| 8 | 7 6 | cfv | |- ( x ` v ) |
| 9 | cmin | |- - |
|
| 10 | 3 | cv | |- y |
| 11 | 7 10 | cfv | |- ( y ` v ) |
| 12 | 8 11 9 | co | |- ( ( x ` v ) - ( y ` v ) ) |
| 13 | 4 5 12 | cmpt | |- ( v e. RR |-> ( ( x ` v ) - ( y ` v ) ) ) |
| 14 | 1 3 2 2 13 | cmpo | |- ( x e. _V , y e. _V |-> ( v e. RR |-> ( ( x ` v ) - ( y ` v ) ) ) ) |
| 15 | 0 14 | wceq | |- -r = ( x e. _V , y e. _V |-> ( v e. RR |-> ( ( x ` v ) - ( y ` v ) ) ) ) |