Description: Define the class of base sets for which the ultrafilter lemma filssufil holds. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ufl | |- UFL = { x | A. f e. ( Fil ` x ) E. g e. ( UFil ` x ) f C_ g } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cufl | |- UFL |
|
| 1 | vx | |- x |
|
| 2 | vf | |- f |
|
| 3 | cfil | |- Fil |
|
| 4 | 1 | cv | |- x |
| 5 | 4 3 | cfv | |- ( Fil ` x ) |
| 6 | vg | |- g |
|
| 7 | cufil | |- UFil |
|
| 8 | 4 7 | cfv | |- ( UFil ` x ) |
| 9 | 2 | cv | |- f |
| 10 | 6 | cv | |- g |
| 11 | 9 10 | wss | |- f C_ g |
| 12 | 11 6 8 | wrex | |- E. g e. ( UFil ` x ) f C_ g |
| 13 | 12 2 5 | wral | |- A. f e. ( Fil ` x ) E. g e. ( UFil ` x ) f C_ g |
| 14 | 13 1 | cab | |- { x | A. f e. ( Fil ` x ) E. g e. ( UFil ` x ) f C_ g } |
| 15 | 0 14 | wceq | |- UFL = { x | A. f e. ( Fil ` x ) E. g e. ( UFil ` x ) f C_ g } |