Metamath Proof Explorer


Definition df-vd2

Description: Definition of a 2-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011) (New usage is discouraged.)

Ref Expression
Assertion df-vd2
|- ( (. ph ,. ps ->. ch ). <-> ( ( ph /\ ps ) -> ch ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph
 |-  ph
1 wps
 |-  ps
2 wch
 |-  ch
3 0 1 2 wvd2
 |-  (. ph ,. ps ->. ch ).
4 0 1 wa
 |-  ( ph /\ ps )
5 4 2 wi
 |-  ( ( ph /\ ps ) -> ch )
6 3 5 wb
 |-  ( (. ph ,. ps ->. ch ). <-> ( ( ph /\ ps ) -> ch ) )