Description: Define W-atoms corresponding to an arbitrary "fiducial (i.e. reference) atom" d . These are all atoms not in the polarity of { d } ) , which is the hyperplane determined by d . Definition of set W in Crawley p. 111. (Contributed by NM, 26-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-watsN | |- WAtoms = ( k e. _V |-> ( d e. ( Atoms ` k ) |-> ( ( Atoms ` k ) \ ( ( _|_P ` k ) ` { d } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cwpointsN | |- WAtoms |
|
| 1 | vk | |- k |
|
| 2 | cvv | |- _V |
|
| 3 | vd | |- d |
|
| 4 | catm | |- Atoms |
|
| 5 | 1 | cv | |- k |
| 6 | 5 4 | cfv | |- ( Atoms ` k ) |
| 7 | cpolN | |- _|_P |
|
| 8 | 5 7 | cfv | |- ( _|_P ` k ) |
| 9 | 3 | cv | |- d |
| 10 | 9 | csn | |- { d } |
| 11 | 10 8 | cfv | |- ( ( _|_P ` k ) ` { d } ) |
| 12 | 6 11 | cdif | |- ( ( Atoms ` k ) \ ( ( _|_P ` k ) ` { d } ) ) |
| 13 | 3 6 12 | cmpt | |- ( d e. ( Atoms ` k ) |-> ( ( Atoms ` k ) \ ( ( _|_P ` k ) ` { d } ) ) ) |
| 14 | 1 2 13 | cmpt | |- ( k e. _V |-> ( d e. ( Atoms ` k ) |-> ( ( Atoms ` k ) \ ( ( _|_P ` k ) ` { d } ) ) ) ) |
| 15 | 0 14 | wceq | |- WAtoms = ( k e. _V |-> ( d e. ( Atoms ` k ) |-> ( ( Atoms ` k ) \ ( ( _|_P ` k ) ` { d } ) ) ) ) |