| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cxad |
|- +e |
| 1 |
|
vx |
|- x |
| 2 |
|
cxr |
|- RR* |
| 3 |
|
vy |
|- y |
| 4 |
1
|
cv |
|- x |
| 5 |
|
cpnf |
|- +oo |
| 6 |
4 5
|
wceq |
|- x = +oo |
| 7 |
3
|
cv |
|- y |
| 8 |
|
cmnf |
|- -oo |
| 9 |
7 8
|
wceq |
|- y = -oo |
| 10 |
|
cc0 |
|- 0 |
| 11 |
9 10 5
|
cif |
|- if ( y = -oo , 0 , +oo ) |
| 12 |
4 8
|
wceq |
|- x = -oo |
| 13 |
7 5
|
wceq |
|- y = +oo |
| 14 |
13 10 8
|
cif |
|- if ( y = +oo , 0 , -oo ) |
| 15 |
|
caddc |
|- + |
| 16 |
4 7 15
|
co |
|- ( x + y ) |
| 17 |
9 8 16
|
cif |
|- if ( y = -oo , -oo , ( x + y ) ) |
| 18 |
13 5 17
|
cif |
|- if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) |
| 19 |
12 14 18
|
cif |
|- if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) |
| 20 |
6 11 19
|
cif |
|- if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) |
| 21 |
1 3 2 2 20
|
cmpo |
|- ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) |
| 22 |
0 21
|
wceq |
|- +e = ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) |