Description: Relate the biconditional connective to primitive connectives. See dfbi1ALT for an unusual version proved directly from axioms. (Contributed by NM, 29-Dec-1992)
Ref | Expression | ||
---|---|---|---|
Assertion | dfbi1 | |- ( ( ph <-> ps ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi | |- -. ( ( ( ph <-> ps ) -> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) -> -. ( -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) -> ( ph <-> ps ) ) ) |
|
2 | impbi | |- ( ( ( ph <-> ps ) -> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) -> ( ( -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) -> ( ph <-> ps ) ) -> ( ( ph <-> ps ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) ) ) |
|
3 | 2 | con3rr3 | |- ( -. ( ( ph <-> ps ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) -> ( ( ( ph <-> ps ) -> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) -> -. ( -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) -> ( ph <-> ps ) ) ) ) |
4 | 1 3 | mt3 | |- ( ( ph <-> ps ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) |