Metamath Proof Explorer


Theorem dfbi1

Description: Relate the biconditional connective to primitive connectives. See dfbi1ALT for an unusual version proved directly from axioms. (Contributed by NM, 29-Dec-1992)

Ref Expression
Assertion dfbi1
|- ( ( ph <-> ps ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) )

Proof

Step Hyp Ref Expression
1 df-bi
 |-  -. ( ( ( ph <-> ps ) -> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) -> -. ( -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) -> ( ph <-> ps ) ) )
2 impbi
 |-  ( ( ( ph <-> ps ) -> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) -> ( ( -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) -> ( ph <-> ps ) ) -> ( ( ph <-> ps ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) ) )
3 2 con3rr3
 |-  ( -. ( ( ph <-> ps ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) -> ( ( ( ph <-> ps ) -> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) -> -. ( -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) -> ( ph <-> ps ) ) ) )
4 1 3 mt3
 |-  ( ( ph <-> ps ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) )