Metamath Proof Explorer


Theorem dfiin2

Description: Alternate definition of indexed intersection when B is a set. Definition 15(b) of Suppes p. 44. (Contributed by NM, 28-Jun-1998) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Hypothesis dfiun2.1
|- B e. _V
Assertion dfiin2
|- |^|_ x e. A B = |^| { y | E. x e. A y = B }

Proof

Step Hyp Ref Expression
1 dfiun2.1
 |-  B e. _V
2 dfiin2g
 |-  ( A. x e. A B e. _V -> |^|_ x e. A B = |^| { y | E. x e. A y = B } )
3 1 a1i
 |-  ( x e. A -> B e. _V )
4 2 3 mprg
 |-  |^|_ x e. A B = |^| { y | E. x e. A y = B }