| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ddif |  |-  ( _V \ ( _V \ ( A \ ( _V \ B ) ) ) ) = ( A \ ( _V \ B ) ) | 
						
							| 2 |  | dfun2 |  |-  ( ( _V \ A ) u. ( _V \ B ) ) = ( _V \ ( ( _V \ ( _V \ A ) ) \ ( _V \ B ) ) ) | 
						
							| 3 |  | ddif |  |-  ( _V \ ( _V \ A ) ) = A | 
						
							| 4 | 3 | difeq1i |  |-  ( ( _V \ ( _V \ A ) ) \ ( _V \ B ) ) = ( A \ ( _V \ B ) ) | 
						
							| 5 | 4 | difeq2i |  |-  ( _V \ ( ( _V \ ( _V \ A ) ) \ ( _V \ B ) ) ) = ( _V \ ( A \ ( _V \ B ) ) ) | 
						
							| 6 | 2 5 | eqtri |  |-  ( ( _V \ A ) u. ( _V \ B ) ) = ( _V \ ( A \ ( _V \ B ) ) ) | 
						
							| 7 | 6 | difeq2i |  |-  ( _V \ ( ( _V \ A ) u. ( _V \ B ) ) ) = ( _V \ ( _V \ ( A \ ( _V \ B ) ) ) ) | 
						
							| 8 |  | dfin2 |  |-  ( A i^i B ) = ( A \ ( _V \ B ) ) | 
						
							| 9 | 1 7 8 | 3eqtr4ri |  |-  ( A i^i B ) = ( _V \ ( ( _V \ A ) u. ( _V \ B ) ) ) |