Metamath Proof Explorer


Theorem dfnul2OLD

Description: Obsolete version of dfnul2 as of 23-Sep-2024. (Contributed by NM, 26-Dec-1996) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dfnul2OLD
|- (/) = { x | -. x = x }

Proof

Step Hyp Ref Expression
1 df-nul
 |-  (/) = ( _V \ _V )
2 df-dif
 |-  ( _V \ _V ) = { x | ( x e. _V /\ -. x e. _V ) }
3 pm3.24
 |-  -. ( x e. _V /\ -. x e. _V )
4 equid
 |-  x = x
5 4 notnoti
 |-  -. -. x = x
6 3 5 2false
 |-  ( ( x e. _V /\ -. x e. _V ) <-> -. x = x )
7 6 abbii
 |-  { x | ( x e. _V /\ -. x e. _V ) } = { x | -. x = x }
8 1 2 7 3eqtri
 |-  (/) = { x | -. x = x }