Metamath Proof Explorer


Theorem dfnul4

Description: Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019) Avoid ax-8 , df-clel . (Revised by Gino Giotto, 3-Sep-2024) Prove directly from definition to allow shortening dfnul2 . (Revised by BJ, 23-Sep-2024)

Ref Expression
Assertion dfnul4
|- (/) = { x | F. }

Proof

Step Hyp Ref Expression
1 df-nul
 |-  (/) = ( _V \ _V )
2 df-dif
 |-  ( _V \ _V ) = { x | ( x e. _V /\ -. x e. _V ) }
3 pm3.24
 |-  -. ( x e. _V /\ -. x e. _V )
4 3 bifal
 |-  ( ( x e. _V /\ -. x e. _V ) <-> F. )
5 4 abbii
 |-  { x | ( x e. _V /\ -. x e. _V ) } = { x | F. }
6 1 2 5 3eqtri
 |-  (/) = { x | F. }