Metamath Proof Explorer


Theorem dfvd2anir

Description: Right-to-left inference form of dfvd2an . (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd2anir.1
|- ( ( ph /\ ps ) -> ch )
Assertion dfvd2anir
|- (. (. ph ,. ps ). ->. ch ).

Proof

Step Hyp Ref Expression
1 dfvd2anir.1
 |-  ( ( ph /\ ps ) -> ch )
2 dfvd2an
 |-  ( (. (. ph ,. ps ). ->. ch ). <-> ( ( ph /\ ps ) -> ch ) )
3 1 2 mpbir
 |-  (. (. ph ,. ps ). ->. ch ).