Metamath Proof Explorer


Theorem dif20el

Description: An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015)

Ref Expression
Assertion dif20el
|- ( A e. ( On \ 2o ) -> (/) e. A )

Proof

Step Hyp Ref Expression
1 ondif2
 |-  ( A e. ( On \ 2o ) <-> ( A e. On /\ 1o e. A ) )
2 1 simprbi
 |-  ( A e. ( On \ 2o ) -> 1o e. A )
3 0lt1o
 |-  (/) e. 1o
4 eldifi
 |-  ( A e. ( On \ 2o ) -> A e. On )
5 ontr1
 |-  ( A e. On -> ( ( (/) e. 1o /\ 1o e. A ) -> (/) e. A ) )
6 4 5 syl
 |-  ( A e. ( On \ 2o ) -> ( ( (/) e. 1o /\ 1o e. A ) -> (/) e. A ) )
7 3 6 mpani
 |-  ( A e. ( On \ 2o ) -> ( 1o e. A -> (/) e. A ) )
8 2 7 mpd
 |-  ( A e. ( On \ 2o ) -> (/) e. A )