| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfun3 |
|- ( B u. C ) = ( _V \ ( ( _V \ B ) i^i ( _V \ C ) ) ) |
| 2 |
1
|
difeq2i |
|- ( A \ ( B u. C ) ) = ( A \ ( _V \ ( ( _V \ B ) i^i ( _V \ C ) ) ) ) |
| 3 |
|
inindi |
|- ( A i^i ( ( _V \ B ) i^i ( _V \ C ) ) ) = ( ( A i^i ( _V \ B ) ) i^i ( A i^i ( _V \ C ) ) ) |
| 4 |
|
dfin2 |
|- ( A i^i ( ( _V \ B ) i^i ( _V \ C ) ) ) = ( A \ ( _V \ ( ( _V \ B ) i^i ( _V \ C ) ) ) ) |
| 5 |
|
invdif |
|- ( A i^i ( _V \ B ) ) = ( A \ B ) |
| 6 |
|
invdif |
|- ( A i^i ( _V \ C ) ) = ( A \ C ) |
| 7 |
5 6
|
ineq12i |
|- ( ( A i^i ( _V \ B ) ) i^i ( A i^i ( _V \ C ) ) ) = ( ( A \ B ) i^i ( A \ C ) ) |
| 8 |
3 4 7
|
3eqtr3i |
|- ( A \ ( _V \ ( ( _V \ B ) i^i ( _V \ C ) ) ) ) = ( ( A \ B ) i^i ( A \ C ) ) |
| 9 |
2 8
|
eqtri |
|- ( A \ ( B u. C ) ) = ( ( A \ B ) i^i ( A \ C ) ) |