Metamath Proof Explorer


Theorem dlatl

Description: A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion dlatl
|- ( K e. DLat -> K e. Lat )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Base ` K ) = ( Base ` K )
2 eqid
 |-  ( join ` K ) = ( join ` K )
3 eqid
 |-  ( meet ` K ) = ( meet ` K )
4 1 2 3 isdlat
 |-  ( K e. DLat <-> ( K e. Lat /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) A. z e. ( Base ` K ) ( x ( meet ` K ) ( y ( join ` K ) z ) ) = ( ( x ( meet ` K ) y ) ( join ` K ) ( x ( meet ` K ) z ) ) ) )
5 4 simplbi
 |-  ( K e. DLat -> K e. Lat )