Metamath Proof Explorer
		
		
		
		Description:  Equality theorem for the decimal expansion constructor.  (Contributed by David A. Wheeler, 15-May-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | dp2eq1i.1 | |- A = B | 
					
						|  |  | dp2eq12i.2 | |- C = D | 
				
					|  | Assertion | dp2eq12i | |- _ A C = _ B D | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dp2eq1i.1 |  |-  A = B | 
						
							| 2 |  | dp2eq12i.2 |  |-  C = D | 
						
							| 3 | 1 | dp2eq1i |  |-  _ A C = _ B C | 
						
							| 4 | 2 | dp2eq2i |  |-  _ B C = _ B D | 
						
							| 5 | 3 4 | eqtri |  |-  _ A C = _ B D |