Description: The scalar multiplication operation of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drgext.b | |- B = ( ( subringAlg ` E ) ` U ) |
|
| drgext.1 | |- ( ph -> E e. DivRing ) |
||
| drgext.2 | |- ( ph -> U e. ( SubRing ` E ) ) |
||
| Assertion | drgextvsca | |- ( ph -> ( .r ` E ) = ( .s ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drgext.b | |- B = ( ( subringAlg ` E ) ` U ) |
|
| 2 | drgext.1 | |- ( ph -> E e. DivRing ) |
|
| 3 | drgext.2 | |- ( ph -> U e. ( SubRing ` E ) ) |
|
| 4 | 1 | a1i | |- ( ph -> B = ( ( subringAlg ` E ) ` U ) ) |
| 5 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 6 | 5 | subrgss | |- ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) ) |
| 7 | 3 6 | syl | |- ( ph -> U C_ ( Base ` E ) ) |
| 8 | 4 7 | sravsca | |- ( ph -> ( .r ` E ) = ( .s ` B ) ) |