Metamath Proof Explorer


Theorem drgextvsca

Description: The scalar multiplication operation of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)

Ref Expression
Hypotheses drgext.b
|- B = ( ( subringAlg ` E ) ` U )
drgext.1
|- ( ph -> E e. DivRing )
drgext.2
|- ( ph -> U e. ( SubRing ` E ) )
Assertion drgextvsca
|- ( ph -> ( .r ` E ) = ( .s ` B ) )

Proof

Step Hyp Ref Expression
1 drgext.b
 |-  B = ( ( subringAlg ` E ) ` U )
2 drgext.1
 |-  ( ph -> E e. DivRing )
3 drgext.2
 |-  ( ph -> U e. ( SubRing ` E ) )
4 1 a1i
 |-  ( ph -> B = ( ( subringAlg ` E ) ` U ) )
5 eqid
 |-  ( Base ` E ) = ( Base ` E )
6 5 subrgss
 |-  ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) )
7 3 6 syl
 |-  ( ph -> U C_ ( Base ` E ) )
8 4 7 sravsca
 |-  ( ph -> ( .r ` E ) = ( .s ` B ) )