Description: The scalar multiplication operation of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drgext.b | |- B = ( ( subringAlg ` E ) ` U ) |
|
drgext.1 | |- ( ph -> E e. DivRing ) |
||
drgext.2 | |- ( ph -> U e. ( SubRing ` E ) ) |
||
Assertion | drgextvsca | |- ( ph -> ( .r ` E ) = ( .s ` B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drgext.b | |- B = ( ( subringAlg ` E ) ` U ) |
|
2 | drgext.1 | |- ( ph -> E e. DivRing ) |
|
3 | drgext.2 | |- ( ph -> U e. ( SubRing ` E ) ) |
|
4 | 1 | a1i | |- ( ph -> B = ( ( subringAlg ` E ) ` U ) ) |
5 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
6 | 5 | subrgss | |- ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) ) |
7 | 3 6 | syl | |- ( ph -> U C_ ( Base ` E ) ) |
8 | 4 7 | sravsca | |- ( ph -> ( .r ` E ) = ( .s ` B ) ) |