Metamath Proof Explorer


Theorem dvdsrcl

Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014)

Ref Expression
Hypotheses dvdsr.1
|- B = ( Base ` R )
dvdsr.2
|- .|| = ( ||r ` R )
Assertion dvdsrcl
|- ( X .|| Y -> X e. B )

Proof

Step Hyp Ref Expression
1 dvdsr.1
 |-  B = ( Base ` R )
2 dvdsr.2
 |-  .|| = ( ||r ` R )
3 eqid
 |-  ( .r ` R ) = ( .r ` R )
4 1 2 3 dvdsr
 |-  ( X .|| Y <-> ( X e. B /\ E. x e. B ( x ( .r ` R ) X ) = Y ) )
5 4 simplbi
 |-  ( X .|| Y -> X e. B )