Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdsr.1 | |- B = ( Base ` R ) |
|
dvdsr.2 | |- .|| = ( ||r ` R ) |
||
Assertion | dvdsrcl | |- ( X .|| Y -> X e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr.1 | |- B = ( Base ` R ) |
|
2 | dvdsr.2 | |- .|| = ( ||r ` R ) |
|
3 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
4 | 1 2 3 | dvdsr | |- ( X .|| Y <-> ( X e. B /\ E. x e. B ( x ( .r ` R ) X ) = Y ) ) |
5 | 4 | simplbi | |- ( X .|| Y -> X e. B ) |