Metamath Proof Explorer


Theorem e002

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e002.1
|- ph
e002.2
|- ps
e002.3
|- (. ch ,. th ->. ta ).
e002.4
|- ( ph -> ( ps -> ( ta -> et ) ) )
Assertion e002
|- (. ch ,. th ->. et ).

Proof

Step Hyp Ref Expression
1 e002.1
 |-  ph
2 e002.2
 |-  ps
3 e002.3
 |-  (. ch ,. th ->. ta ).
4 e002.4
 |-  ( ph -> ( ps -> ( ta -> et ) ) )
5 1 vd02
 |-  (. ch ,. th ->. ph ).
6 2 vd02
 |-  (. ch ,. th ->. ps ).
7 5 6 3 4 e222
 |-  (. ch ,. th ->. et ).