Metamath Proof Explorer


Theorem e022

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e022.1
|- ph
e022.2
|- (. ps ,. ch ->. th ).
e022.3
|- (. ps ,. ch ->. ta ).
e022.4
|- ( ph -> ( th -> ( ta -> et ) ) )
Assertion e022
|- (. ps ,. ch ->. et ).

Proof

Step Hyp Ref Expression
1 e022.1
 |-  ph
2 e022.2
 |-  (. ps ,. ch ->. th ).
3 e022.3
 |-  (. ps ,. ch ->. ta ).
4 e022.4
 |-  ( ph -> ( th -> ( ta -> et ) ) )
5 1 vd02
 |-  (. ps ,. ch ->. ph ).
6 5 2 3 4 e222
 |-  (. ps ,. ch ->. et ).