Metamath Proof Explorer


Theorem e13an

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e13an.1
|- (. ph ->. ps ).
e13an.2
|- (. ph ,. ch ,. th ->. ta ).
e13an.3
|- ( ( ps /\ ta ) -> et )
Assertion e13an
|- (. ph ,. ch ,. th ->. et ).

Proof

Step Hyp Ref Expression
1 e13an.1
 |-  (. ph ->. ps ).
2 e13an.2
 |-  (. ph ,. ch ,. th ->. ta ).
3 e13an.3
 |-  ( ( ps /\ ta ) -> et )
4 3 ex
 |-  ( ps -> ( ta -> et ) )
5 1 2 4 e13
 |-  (. ph ,. ch ,. th ->. et ).