Metamath Proof Explorer


Theorem ee323

Description: e323 without virtual deductions. (Contributed by Alan Sare, 17-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee323.1
|- ( ph -> ( ps -> ( ch -> th ) ) )
ee323.2
|- ( ph -> ( ps -> ta ) )
ee323.3
|- ( ph -> ( ps -> ( ch -> et ) ) )
ee323.4
|- ( th -> ( ta -> ( et -> ze ) ) )
Assertion ee323
|- ( ph -> ( ps -> ( ch -> ze ) ) )

Proof

Step Hyp Ref Expression
1 ee323.1
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
2 ee323.2
 |-  ( ph -> ( ps -> ta ) )
3 ee323.3
 |-  ( ph -> ( ps -> ( ch -> et ) ) )
4 ee323.4
 |-  ( th -> ( ta -> ( et -> ze ) ) )
5 2 a1dd
 |-  ( ph -> ( ps -> ( ch -> ta ) ) )
6 1 5 3 4 ee333
 |-  ( ph -> ( ps -> ( ch -> ze ) ) )