Metamath Proof Explorer


Theorem eelT

Description: An elimination deduction. (Contributed by Alan Sare, 5-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelT.1
|- ( T. -> ph )
eelT.2
|- ( ph -> ps )
Assertion eelT
|- ps

Proof

Step Hyp Ref Expression
1 eelT.1
 |-  ( T. -> ph )
2 eelT.2
 |-  ( ph -> ps )
3 1 2 syl
 |-  ( T. -> ps )
4 3 mptru
 |-  ps