Metamath Proof Explorer


Theorem eleqtrrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eleqtrrid.1
|- A e. B
eleqtrrid.2
|- ( ph -> C = B )
Assertion eleqtrrid
|- ( ph -> A e. C )

Proof

Step Hyp Ref Expression
1 eleqtrrid.1
 |-  A e. B
2 eleqtrrid.2
 |-  ( ph -> C = B )
3 2 eqcomd
 |-  ( ph -> B = C )
4 1 3 eleqtrid
 |-  ( ph -> A e. C )