Metamath Proof Explorer
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
|
|
Ref |
Expression |
|
Hypotheses |
eleqtrrid.1 |
|- A e. B |
|
|
eleqtrrid.2 |
|- ( ph -> C = B ) |
|
Assertion |
eleqtrrid |
|- ( ph -> A e. C ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eleqtrrid.1 |
|- A e. B |
2 |
|
eleqtrrid.2 |
|- ( ph -> C = B ) |
3 |
2
|
eqcomd |
|- ( ph -> B = C ) |
4 |
1 3
|
eleqtrid |
|- ( ph -> A e. C ) |