| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
|- 1 e. ZZ |
| 2 |
|
fzsubel |
|- ( ( ( 1 e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ 1 e. ZZ ) ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
| 3 |
1 2
|
mpanl1 |
|- ( ( N e. ZZ /\ ( K e. ZZ /\ 1 e. ZZ ) ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
| 4 |
1 3
|
mpanr2 |
|- ( ( N e. ZZ /\ K e. ZZ ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
| 5 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 6 |
5
|
oveq1i |
|- ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) |
| 7 |
6
|
eleq2i |
|- ( ( K - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) <-> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 8 |
4 7
|
bitrdi |
|- ( ( N e. ZZ /\ K e. ZZ ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |
| 9 |
8
|
ancoms |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |