Metamath Proof Explorer


Theorem elfzuz3

Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elfzuz3
|- ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) )

Proof

Step Hyp Ref Expression
1 elfzuzb
 |-  ( K e. ( M ... N ) <-> ( K e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) )
2 1 simprbi
 |-  ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) )