Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | eliminable3b | |- ( { x | ph } e. { y | ps } <-> E. z ( z = { x | ph } /\ z e. { y | ps } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel | |- ( { x | ph } e. { y | ps } <-> E. z ( z = { x | ph } /\ z e. { y | ps } ) ) |