Metamath Proof Explorer


Theorem elioo3g

Description: Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show A e. RR* and B e. RR* . (Contributed by NM, 24-Dec-2006) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion elioo3g
|- ( C e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < C /\ C < B ) ) )

Proof

Step Hyp Ref Expression
1 df-ioo
 |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } )
2 1 elixx3g
 |-  ( C e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < C /\ C < B ) ) )