Description: Deduction associated with elmapd . (Contributed by SN, 29-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elmapdd.a | |- ( ph -> A e. V ) |
|
elmapdd.b | |- ( ph -> B e. W ) |
||
elmapdd.c | |- ( ph -> C : B --> A ) |
||
Assertion | elmapdd | |- ( ph -> C e. ( A ^m B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapdd.a | |- ( ph -> A e. V ) |
|
2 | elmapdd.b | |- ( ph -> B e. W ) |
|
3 | elmapdd.c | |- ( ph -> C : B --> A ) |
|
4 | 1 2 | elmapd | |- ( ph -> ( C e. ( A ^m B ) <-> C : B --> A ) ) |
5 | 3 4 | mpbird | |- ( ph -> C e. ( A ^m B ) ) |