Metamath Proof Explorer


Theorem elmapdd

Description: Deduction associated with elmapd . (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses elmapdd.a
|- ( ph -> A e. V )
elmapdd.b
|- ( ph -> B e. W )
elmapdd.c
|- ( ph -> C : B --> A )
Assertion elmapdd
|- ( ph -> C e. ( A ^m B ) )

Proof

Step Hyp Ref Expression
1 elmapdd.a
 |-  ( ph -> A e. V )
2 elmapdd.b
 |-  ( ph -> B e. W )
3 elmapdd.c
 |-  ( ph -> C : B --> A )
4 1 2 elmapd
 |-  ( ph -> ( C e. ( A ^m B ) <-> C : B --> A ) )
5 3 4 mpbird
 |-  ( ph -> C e. ( A ^m B ) )