Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011) (Proof shortened by BJ, 16-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elpred.1 | |- Y e. _V |
|
Assertion | elpred | |- ( X e. D -> ( Y e. Pred ( R , A , X ) <-> ( Y e. A /\ Y R X ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpred.1 | |- Y e. _V |
|
2 | elpredgg | |- ( ( X e. D /\ Y e. _V ) -> ( Y e. Pred ( R , A , X ) <-> ( Y e. A /\ Y R X ) ) ) |
|
3 | 1 2 | mpan2 | |- ( X e. D -> ( Y e. Pred ( R , A , X ) <-> ( Y e. A /\ Y R X ) ) ) |