Description: Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020) (Proof shortened by BJ, 6-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elpwunicl.1 | |- ( ph -> A e. ~P ~P B ) |
|
| Assertion | elpwunicl | |- ( ph -> U. A e. ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwunicl.1 | |- ( ph -> A e. ~P ~P B ) |
|
| 2 | elpwpwel | |- ( A e. ~P ~P B <-> U. A e. ~P B ) |
|
| 3 | 1 2 | sylib | |- ( ph -> U. A e. ~P B ) |