Description: Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020) (Proof shortened by BJ, 6-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elpwunicl.1 | |- ( ph -> A e. ~P ~P B ) |
|
Assertion | elpwunicl | |- ( ph -> U. A e. ~P B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwunicl.1 | |- ( ph -> A e. ~P ~P B ) |
|
2 | elpwpwel | |- ( A e. ~P ~P B <-> U. A e. ~P B ) |
|
3 | 1 2 | sylib | |- ( ph -> U. A e. ~P B ) |