Metamath Proof Explorer


Theorem elrelsrelim

Description: The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019)

Ref Expression
Assertion elrelsrelim
|- ( R e. Rels -> Rel R )

Proof

Step Hyp Ref Expression
1 elrelsrel
 |-  ( R e. Rels -> ( R e. Rels <-> Rel R ) )
2 1 ibi
 |-  ( R e. Rels -> Rel R )