Metamath Proof Explorer


Theorem elrnmptdv

Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses elrnmptdv.1
|- F = ( x e. A |-> B )
elrnmptdv.2
|- ( ph -> C e. A )
elrnmptdv.3
|- ( ph -> D e. V )
elrnmptdv.4
|- ( ( ph /\ x = C ) -> D = B )
Assertion elrnmptdv
|- ( ph -> D e. ran F )

Proof

Step Hyp Ref Expression
1 elrnmptdv.1
 |-  F = ( x e. A |-> B )
2 elrnmptdv.2
 |-  ( ph -> C e. A )
3 elrnmptdv.3
 |-  ( ph -> D e. V )
4 elrnmptdv.4
 |-  ( ( ph /\ x = C ) -> D = B )
5 4 2 rspcime
 |-  ( ph -> E. x e. A D = B )
6 1 elrnmpt
 |-  ( D e. V -> ( D e. ran F <-> E. x e. A D = B ) )
7 3 6 syl
 |-  ( ph -> ( D e. ran F <-> E. x e. A D = B ) )
8 5 7 mpbird
 |-  ( ph -> D e. ran F )