Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elrnmptdv.1 | |- F = ( x e. A |-> B ) |
|
elrnmptdv.2 | |- ( ph -> C e. A ) |
||
elrnmptdv.3 | |- ( ph -> D e. V ) |
||
elrnmptdv.4 | |- ( ( ph /\ x = C ) -> D = B ) |
||
Assertion | elrnmptdv | |- ( ph -> D e. ran F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmptdv.1 | |- F = ( x e. A |-> B ) |
|
2 | elrnmptdv.2 | |- ( ph -> C e. A ) |
|
3 | elrnmptdv.3 | |- ( ph -> D e. V ) |
|
4 | elrnmptdv.4 | |- ( ( ph /\ x = C ) -> D = B ) |
|
5 | 4 2 | rspcime | |- ( ph -> E. x e. A D = B ) |
6 | 1 | elrnmpt | |- ( D e. V -> ( D e. ran F <-> E. x e. A D = B ) ) |
7 | 3 6 | syl | |- ( ph -> ( D e. ran F <-> E. x e. A D = B ) ) |
8 | 5 7 | mpbird | |- ( ph -> D e. ran F ) |