Description: An element of a class is a subclass of its union. Theorem 8.6 of Quine p. 54. Also the basis for Proposition 7.20 of TakeutiZaring p. 40. (Contributed by NM, 6-Jun-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | elssuni | |- ( A e. B -> A C_ U. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid | |- A C_ A |
|
2 | ssuni | |- ( ( A C_ A /\ A e. B ) -> A C_ U. B ) |
|
3 | 1 2 | mpan | |- ( A e. B -> A C_ U. B ) |